A multi-array multi-SNP genotyping algorithm for Affymetrix SNP microarrays
نویسندگان
چکیده
MOTIVATION Modern strategies for mapping disease loci require efficient genotyping of a large number of known polymorphic sites in the genome. The sensitive and high-throughput nature of hybridization-based DNA microarray technology provides an ideal platform for such an application by interrogating up to hundreds of thousands of single nucleotide polymorphisms (SNPs) in a single assay. Similar to the development of expression arrays, these genotyping arrays pose many data analytic challenges that are often platform specific. Affymetrix SNP arrays, e.g. use multiple sets of short oligonucleotide probes for each known SNP, and require effective statistical methods to combine these probe intensities in order to generate reliable and accurate genotype calls. RESULTS We developed an integrated multi-SNP, multi-array genotype calling algorithm for Affymetrix SNP arrays, MAMS, that combines single-array multi-SNP (SAMS) and multi-array, single-SNP (MASS) calls to improve the accuracy of genotype calls, without the need for training data or computation-intensive normalization procedures as in other multi-array methods. The algorithm uses resampling techniques and model-based clustering to derive single array based genotype calls, which are subsequently refined by competitive genotype calls based on (MASS) clustering. The resampling scheme caps computation for single-array analysis and hence is readily scalable, important in view of expanding numbers of SNPs per array. The MASS update is designed to improve calls for atypical SNPs, harboring allele-imbalanced binding affinities, that are difficult to genotype without information from other arrays. Using a publicly available data set of HapMap samples from Affymetrix, and independent calls by alternative genotyping methods from the HapMap project, we show that our approach performs competitively to existing methods. AVAILABILITY R functions are available upon request from the authors.
منابع مشابه
MACGT: multi-dimensional automated clustering genotyping tool for analysis of microarray-based mini-sequencing data
SUMMARY Multi-dimensional Automated Clustering Genotyping Tool (MACGT) is a Java application that clusters complex multi-dimensional vector data derived from single nucleotide polymorphism (SNP) genotyping experiments using mini-sequencing based microarray chemistries such as arrayed primer extension (APEX). Spot intensity output files from microarray experiments across multiple samples are imp...
متن کاملA genotype calling algorithm for affymetrix SNP arrays
MOTIVATION A classification algorithm, based on a multi-chip, multi-SNP approach is proposed for Affymetrix SNP arrays. Current procedures for calling genotypes on SNP arrays process all the features associated with one chip and one SNP at a time. Using a large training sample where the genotype labels are known, we develop a supervised learning algorithm to obtain more accurate classification ...
متن کاملAutomated SNP Genotype Clustering Algorithm to Improve Data Completeness in High-Throughput SNP Genotyping Datasets from Custom Arrays
High-throughput SNP genotyping platforms use automated genotype calling algorithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was origi...
متن کاملGenotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans
The identification of quantitative trait loci (QTLs) of small effect size that underlie complex traits poses a particular challenge for geneticists due to the large sample sizes and large numbers of genetic markers required for genomewide association scans. An efficient solution for screening purposes is to combine single nucleotide polymorphism (SNP) microarrays and DNA pooling (SNP-MaP), an a...
متن کاملEffect of Combining Multiple CNV Defining Algorithms on the Reliability of CNV Calls from SNP Genotyping Data
In addition to single-nucleotide polymorphisms (SNP), copy number variation (CNV) is a major component of human genetic diversity. Among many whole-genome analysis platforms, SNP arrays have been commonly used for genomewide CNV discovery. Recently, a number of CNV defining algorithms from SNP genotyping data have been developed; however, due to the fundamental limitation of SNP genotyping data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2007